<u>Instruction Set</u> > <u>CIP Axis Attributes</u> > Converter AC Line Monitoring Attributes

Converter AC Line Monitoring Attributes

These are the converter AC line monitoring attributes associated with the AC Line input to a Converter.

AC Line Frequency

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Required - G	Get	Т	REAL	-	-	-	Hertz

The AC Line Frequency attribute represents the measured AC line frequency.

AC Line Current

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Required - G	Get	Т	REAL	-	-	-	Amps (RMS)

The AC Line Current attribute represents the average RMS AC line current for all three phases as measured over an AC cycle.

AC Line Voltage

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Required - G	Get	Т	REAL	-	-	-	Volts (RMS)

The AC Line Voltage attribute represents the average RMS AC line-to-line voltage for all three phases as measured over an AC cycle.

AC Line Voltage - Nominal

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Volts (RMS)

The AC Line Voltage - Nominal attribute represents the filtered average RMS AC line-to-line voltage based on a time constant. The low pass filter time constant is factory set or configurable using the optional AC Line Voltage Filter Time Constant.

AC Line Voltage Time Constant

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Set		REAL	360	0	90	Seconds

The AC Line Voltage Time Constant attribute sets the low pass filter time constant applied to the AC Line Voltage to determine the AC Line Voltage Nominal attribute value.

AC Line Active Power

U	sage	Access	Т	Data Type	Default	Min	Max	Semantics of Values

Search

- D Quick Start Steps
- ▶ <u>Logix Designer</u>
- ▶ Module Information
- ▲ Instruction Set

<u>Logix 5000 Controllers</u> <u>Instruction and Application</u> <u>Considerations</u>

Logix Designer Application
Instruction Set

<u>Interpret the Attribute Tables</u>

Array Concepts

▲ CIP Axis Attributes

AXIS CIP DRIVE Diagrams

AXIS CIP DRIVE Structure

Accessing Attributes

AC Line Condition
Attributes

Acceleration Control
Attributes

Acceleration Control
Configuration Attributes

Additional Error Code Information

▶ APR Fault Attributes
 Auto-Tune Configuration
 Attributes

Axis Exception Action
Configuration Attributes
Axis Info Attributes
Axis Safety Status
Attributes

Axis Statistical Attributes

CIP Axis Status Attributes

CIP Error Codes

<u>CIP Motion Axis Control</u> <u>Modes</u>

Command Reference
 Generation Attributes
 Configuration Fault
 Attributes

Control Mode Attributes

Converter AC Line
Configuration Attributes

Converter AC Line

Monitoring Attributes

Converter AC Line Source
Configuration Attributes

Converter Bus Voltage
Control Configuration

<u>Attributes</u>

<u>Converter Bus Voltage</u> <u>Control Signal Attributes</u>

Converter Control Mode

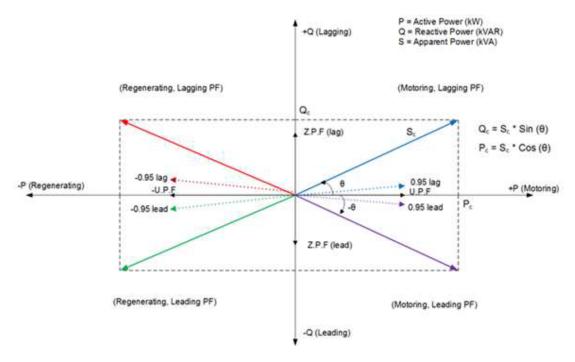
Attributos

Optional - G	Get	REAL	-	-	-	Kilowatts

The AC Line Active Power attribute represents the measured active AC Line power. A positive value indicates motoring power and a negative value indicates regenerative power. See diagram below.

AC Line Reactive Power

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	kVAR


The AC Line Reactive Power attribute represents the measured reactive AC Line power. A positive value indicates lagging power is consumed by the converter and negative value indicates leading power is produced by the converter. See diagram below.

AC Line Apparent Power

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	kVA

The AC Line Apparent Power attribute represents the measured apparent AC Line power representing the magnitude of the vector sum of active and reactive power. This value is strictly positive.

The following diagram illustrates the definition for Leading and Lagging Power Factor, Active Power, and Reactive Power for Regenerative Converters.

Apparent Power, Sc, is the vector sum of active and reactive power and is always a positive value. It is specified in Volt-Amperes. Active power, Pc, is the real or active component of apparent power delivered to the load and can be positive (motoring) or negative (regenerating). Reactive power, Qc, is the imaginary or reactive component of apparent power delivered to the AC line. A positive value of reactive power indicates that reactive power is absorbed (lagging reactive power) from the line by the converter. A negative value of reactive power indicates that reactive power is delivered (leading reactive) to the AC line from the converter.

AC Line Power Factor

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	

The AC Line Power Factor attribute represents the measured input power factor defined as the ratio of active power over apparent power. The value ranges from -1 to +1. A

<u>Attributes</u>

Converter Current Control
Configuration Attributes

Converter Current Control

Signal Attributes

Converter Current

Reference Configuration

Attributes

Converter Current

Reference Signal Attributes

Converter Output

<u>Attributes</u>

Converter Reactive Power

Control Attributes

Converter Types

Current Control Signal

<u>Attributes</u>

<u>Current Control</u>

Configuration Attributes

Cyclic Read and Cyclic Write

DC Bus Condition

<u>Attributes</u>

Device Function Codes

Device Commissioning

<u>Attributes</u>

Drive General Purpose I/O

<u>Attributes</u>

Drive Output Attributes

Drive Parameters

Event Capture Attributes

Exception Factory Limit

Info Attributes

Exception User Limit

Configuration Attributes

Exception, Fault and Alarm

<u>Attributes</u>

Exceptions

<u>Fault and Alarm Behavior</u>

<u>Feedback Interface Types</u>

Feedback Configuration

<u>Attributes</u>

Frequency Control

Configuration Attributes

<u>Frequency Control Signal</u>

Attribute

General Feedback Info

Attributes

General Feedback Signal

Attributes

General Linear Motor

<u>Attributes</u>

General Motor Attributes

General Permanent

Magnet Motor Attributes

General Rotary Motor

positive value indicates motoring power and a negative value indicates regenerative power.

AC Line 1 Current

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Amps (RMS)

The AC Line 1 Current attribute represents the AC Line current in phase L1 on the converter-side of the AC Line Filter measured over an AC cycle.

AC Line 2 Current

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Amps (RMS)

The AC Line 2 Current attribute represents the AC Line current in phase L2 on the converter-side of the AC Line Filter measured over an AC cycle.

AC Line 3 Current

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Amps (RMS)

The AC Line 3 Current attribute represents the AC Line current in phase L3 on the converter-side of the AC Line Filter measured over an AC cycle.

AC Line Current Unbalance

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	% Rated (RMS)

The AC Line Current Unbalance attribute represents the estimated AC Line current unbalance, which is the ratio of negative sequence current (counter-clockwise) to positive sequence current (clockwise). When AC Line is in perfect balance and properly phased, negative sequence current is zero and positive sequence current is the full magnitude of the AC line current vector in RMS units. The AC Line Current Unbalance value can be approximated by the following equation:

Unbalance (%) = $100 * (I_{I,\#(max)} - I_{avg})/I_{rated}$

Where:

 $I_{avg} = (I_{L1} + I_{L2} + I_{L3})/3$

 $I_{L\#(max)} = Max(I_{L1},I_{L2},I_{L3})$

AC Line Ground Current

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	_	-	-	Amps

The AC Line Ground Current attribute represents the ground current typically measured as the instantaneous sum of the AC Line currents for all three phases

Attributes

Guard Safety Attributes

Guard Safety Status

Attributes

Hookup Test Configuration

Attributes

Hookup Test Result

Attributes

<u>Identify Motion Axis</u>

Attributes Based on Device

Function Codes

Induction Motor Attributes

Inertia Test Configuration

Attributes

Inertia Test Result

Attributes

<u>Initialization Faults</u>

Attributes

<u>Interior Permanent Magnet</u>

Motor Attributes

<u>Linear PM Motor Attributes</u>

Load Transmission and

Actuator Attributes

Local Mode Configuration

Attribute

Module/Node Fault and

Alarm Attributes

Motion Control Axis

Behavior Model

Motion Control

Configuration Attributes

Motion Control Interface

<u>Attributes</u>

Motion Control Methods

Motion Control Modes

Motion Control Signal

Attributes

Motion Control Status

Attributes

Motion Database Storage

<u>Attributes</u>

Motion Dynamic

Configuration Attributes

Motion Fault and Alarm

<u>Exceptions</u>

Motion Homing

Configuration Attributes

Motion Instruction

Compatibility

Motion Planner

Configuration Attributes

Motion Planner Output

Attributes

Motion Scaling Attributes

Motor Attributes

N A - + - - - A + + - - ! | - - - + - - - | N A - - | - |

аз те пізапансовз запі от пе ле ыне сапено юган апте рназез.

AC Line 1 Voltage

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	_	-	-	Volts (RMS)

The AC Line 1 Voltage attribute represents the AC Line-to-Line voltage between phase L1 and L2 on the grid-side of the AC Line Filter.

AC Line 2 Voltage

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Volts (RMS)

The AC Line 2 Voltage attribute represents the AC Line-to-Line voltage between phase L2 and L3 on the grid-side of the AC Line Filter.

AC Line 3 Voltage

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Volts (RMS)

The AC Line 3 Voltage attribute represents the AC Line-to-Line voltage between phase L3 and L1 on the grid-side of the AC Line Filter.

AC Line Voltage Unbalance

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	% of Volts (RMS)

The AC Line Voltage Unbalance attribute represents the estimated AC Line voltage unbalance. Voltage unbalance is defined as the ratio of negative sequence voltage (counter-clockwise) to positive sequence voltage (clockwise). When AC Line is in perfect balance and properly phased, negative sequence voltage is zero and positive sequence voltage is the full magnitude of the AC line voltage vector (line to line) in RMS units. The AC Line Voltage Unbalance value can be approximated by the following equation:

Unbalance (%) = 100 * $(V_{LL,(max)} - V_{LL,(avg)})/V_{LL,(avg)}$

Where:

 $V_{LL}(avg) = (V_{L1} + V_{L2} + V_{L3})/3$

 $V_{LL(max)} = Max(V_{L1}, V_{L2}, V_{L3})$

AC Line Sync Error

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	Degrees

The AC Line Sync Error attribute represents the phase error associated with the AC line synchronization function of the regenerative converter.

AC Line Filter Deretine

MOTOR ATTRIBUTES MODE!

Motor Test Result
Attributes

No Control Mode

<u>Position Control Mode</u>

Position Loop Signal

Attributes

Position Loop

Configuration Attributes

Power and Thermal

Management Configuration

<u>Attributes</u>

Power and Thermal

Management Status

Attributes

Replicated Attributes

Required vs. Optional Axis

<u>Attributes</u>

Reset an APR Fault

Rockwell Automation

<u>Specific CIP Axis Alarm</u> Names

Rockwell Automation

Specific Exceptions

Rockwell Automation

Specific CIP Axis Fault

<u>Names</u>

Rockwell Automation

Specific Initialization Faults

Rockwell Automation

Specific Start Inhibits

Rotary PM Motor Attributes

Standard CIP Axis Fault and

Alarm Names

Standard Exceptions

Rotary PM Motor Attributes

Standard Initialization

<u>Faults</u>

Standard Start Inhibits

Start Inhibits Attributes

State Behavior

Stopping and Braking Attributes

Torque Control Mode

Torque/Force Control

Configuration Attributes

Torque/Force Control

Signal Attributes

Velocity Control Mode

Velocity Loop Configuration

<u>Attributes</u>

Velocity Loop Signal

<u>Attributes</u>

▶ Module Configuration Attributes

AC Line Fliter Derating

Usage	Access	Т	Data Type	Default	Min	Max	Semantics of Values
Optional - G	Get		REAL	-	-	-	% Converter Rated

The AC Line Filter Derating attribute indicates the percent derating applied to the converter power when the AC Line Filter is operating above its rated thermal capacity and the converter's Bus Voltage Reference Source is set to Manual. Derating shall not be applied when Bus Voltage Reference Source is set to Automatic. When applied in an AC Line filter overload condition, the AC Line Filter Derating value directly impacts attribute values for Reactive Power Available, Converter Rated Output Power, Converter Rated Input Power, and Converter Capacity.

The AC Line Filter Derating value is calculated based on the time averaged voltage difference between the DC Bus Voltage and the optimal Bus Voltage Reference determined by the Converter based on AC line input voltage and the thermal limits of the AC Line Filter. For example, a value of 70% indicates that the converter can only run at 70% rated continuous power when the AC line filter has reached its rated thermal capacity. If converter power exceeds the 70% derating, the converter's thermal overload protection function is activated leading to the configured Converter Overload Action or a Converter Thermal Overload FL or UL exception.

Converter Rated is defined as the Converter Rated Input Power attribute value.

See also

Converter AC Line Configuration Attributes

Bit Addressing

Common Attributes

Data Conversions

Elementary data types

LINT data types

Floating Point Values

<u>Immediate values</u>

Index Through Arrays

Math Status Flags

Motion Error Codes (.ERR)

Structures

- Equipment Sequence instructions
- Equipment Phase Instructions
- ▶ Alarm Instructions
- Advanced Math Instructions
- Array (File)/Misc Instructions
- Array (File)/Shift Instructions
- ASCII Conversion Instructions
- ▶ ASCII String Instructions
- **Bit Instructions**
- Debug Instructions
- Drives Instructions
- Drive Safety Instructions
- For/Break Instructions
- Filter Instructions

- Compute/Math Instructions
- Move/Logical Instructions
- ▶ <u>Input/Output Instructions</u>
- Math Conversion Instructions
- ▶ Metal Form Instructions
- ▶ Motion Configuration Instructions
- Motion Group Instructions
- Motion Move Instructions
- Motion State Instructions
- ▶ Multi-Axis Coordinated Motion Instructions
- ▶ Logical and Move Instructions
- Program Control Instructions
- Sequencer Instructions
- ▶ Special Instructions
- Timer and Counter Instructions
- ▶ <u>Trigonometric Instructions</u>
- Process Control Instructions

- Sequential Function Chart (SFC) Instructions

- Studio 5000 Logix Designer
 Glossary

Copyright © 2019 Rockwell Automation Technologies, Inc. All Rights Reserved.

How are we doing?